
SA402 Dynamic and StochasticModels Fall 2023 Uhan

Lesson 6. Markov Chains – Long-Run Probabilities

1 Overview

● Previous lesson: probabilities that depend on the number of time steps, for example

p(n)i j = Pr{Sn = j ∣ S0 = i} q(n)j = Pr{Sn = j}

● This lesson: what happens in the long run, i.e. as n →∞? In particular, what is the limiting probability

p(∞)i j = lim
n→∞

p(n)i j ?

2 Periodic and aperiodic states

● Consider the following two-stateMarkov chain:

1 2

1

1

● The n-step transition probability between state 1 and itself is:

● Now consider aMarkov chain with state spaceM = {1, . . . ,m}

● A state i is periodic with period δ (δ is a positive integer) if

p(n)ii

⎧⎪⎪⎨⎪⎪⎩

> 0 if n = δ, 2δ, 3δ, . . .
= 0 otherwise

and therefore p(∞)ii = lim
n→∞

p(n)ii does not exist

● A state i is aperiodic if it is not periodic
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3 Transient and recurrent states

● Consider the following two-stateMarkov chain:

1 20.4

0.6 1

● The limiting probability between state 1 and itself is:

● In other words, the process eventually leaves state 1 and never returns

● Now consider aMarkov chain with state spaceM = {1, . . . ,m}

● A state i is transient if p(∞)ii = 0

○ The process will eventually leave state i and never return

● A state i is recurrent if p(∞)ii > 0

○ The process is guaranteed to return to state i over and over again, given that it reaches state i at some time

Example 1. An autonomous UAV has been programmed to move between five regions to perform surveillance,
according to aMarkov chain in which the states correspond to the regions, and transition probabilities are given
below.

Can you guess which states are transient and which states are recurrent?
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.3 0.5 0 0.1
0 1 0 0 0
0 0 0.8 0.2 0
0 0 0.7 0.3 0
0.5 0 0 0.4 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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4 Decomposition ofMarkov chains

● Can we determine whether a state is transient or recurrent in a systematic way?

● A subset of statesR is a recurrent class if

○ R itself forms a self-containedMarkov chain
○ no proper subset ofR also forms aMarkov chain

● Once aMarkov chain enters a recurrent class, it stays there forever

● AMarkov chain is irreducible if it has a single recurrent class

Example 2. Consider Example 1 again. The transition probabilities are given below.

Does the subset of statesR1 = {3, 4} form a recurrent class? How about T = {1, 5} orR2 = {2}?
Is theMarkov chain irreducible?
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.3 0.5 0 0.1
0 1 0 0 0
0 0 0.8 0.2 0
0 0 0.7 0.3 0
0.5 0 0 0.4 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

● To find the transient and recurrent states of aMarkov chain:

1. Find all recurrent classes
2. All states in a recurrent class are recurrent
3. All states not in a recurrent class are transient

3



5 Accessible and communicating states

● Briefly, an alternative perspective on the concepts above

● A state j is accessible from state i (denoted by i ↝ j) if

○ there is a sequence of transitions that begins in i and ends in j
○ each transition in the sequence has positive probability

● If i ↝ j and j ↝ i, then states i and j are said to communicate (denoted by i ↭ j)

● Some equivalent definitions:

○ A state i is transient iff i ↝ j but j /↝ i for some state j
○ A state i is recurrent iff j ↝ i for every state j such that i ↝ j
○ R is a recurrent class iffR forms a self-containedMC and all states communicate with each other

Example 3. Consider Example 1 again. The transition probabilities are given below.

Do all the states in T = {1, 5} communicate with each other? How aboutR1 = {3, 4}? What is different about the
subsets T andR1?
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.3 0.5 0 0.1
0 1 0 0 0
0 0 0.8 0.2 0
0 0 0.7 0.3 0
0.5 0 0 0.4 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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6 Limiting probabilities

 Before proceeding, let’s take a look at the accompanying Jupyter notebook for this lesson

Example 4. Consider Example 1 again. Recall that the transient states are T = {1, 5}, and that there are two recurrent
classes,R1 = {3, 4} andR2 = {2}. In the Jupyter notebook, to approximate long-run behavior, we computed P1000:

P1000 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.3553 0.5015 0.1433 0
0 1 0 0 0
0 0 0.7778 0.2222 0
0 0 0.7778 0.2222 0
0 0.1974 0.6243 0.1784 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

What do you notice?

● Suppose we have aMarkov chain with state spaceM = {1, . . . ,m} decomposed into

○ a set of transient states T
○ recurrent classesR1,R2, . . . ,Rr

● We also assume that all states are aperiodic

● Based on how the states are classified, we can compute the limiting probabilities p(∞)i j

6.1 Straightforward cases

● If state j is transient, then p(∞)i j =

○ Since state j is transient, even if we reach j, we will eventually leave j and never return

● If states i and j are in different recurrent classes, then p(∞)i j =

○ State i is one self-containedMarkov chain, state j is in another
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6.2 Steady-state probabilities

● Suppose states i and j are in the same recurrent classR with mR states

● In this case, p(∞)i j = π j for some π j > 0

○ p(∞)i j in this case does not depend on i!

● The π j are called steady-state probabilities

○ Given that the process reaches the recurrent class containing state j:

π j = probability of finding the process in state j after a long time
= the long-run fraction of time that the process spends in state j

● We can compute π j by solving the following system of linear equations:

● This system of linear equations has equations and variables

● Using matrix theory, we can show that any one of the equations in (∗) is always redundant

Example 5. Consider Example 1 again. Suppose the UAV reaches region 3 at some point. What is the long-run
fraction of time that the UAV spends in region 3? Region 4?
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6.3 Absorption probabilities

● Suppose state i is transient and state j is the only state in recurrent classR

○ In other words,R = { j} and p j j =

○ Such a state is called an absorbing state

● In this case, p(∞)i j = αi j for some αi j ≥ 0

● The αi j are called absorption probabilities

○ What is the probability that the process is ultimately “absorbed” into state j?

● We can compute the αi j using:

Example 6. Consider Example 1 again. Suppose the UAV starts in region 5. What is the probability that the UAV
ends up in region 2?

● We can find the probability that the process is ultimately absorbed into a recurrent classR (possibly with more
than 1 state) by lumping the states inR into a “super state” and then applying the concepts above

○ See Problem 6 in the Exercises

6.4 Expected time to absoprtion

● The expected time to absorption µi from state i is

● We can compute the expected time to absorption using:
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Example 7. Consider Example 1 again. On average, how long does it take for the UAV to leave regions 1 and 5
forever?

7 Why are the steady-state probabilities computed this way?

● LetR = {1, . . . ,m} be a recurrent class

● Why is π⊺
R
= π⊺
R
P used to compute steady-state probabilities?

● By the law of total probability:

Pr{Sn+1 = j} =
m
∑
i=1

Pr{Sn+1 = j ∣ Sn = i}Pr{Sn = i}

● In the long run (n very large), πi = Pr{Sn+1 = i} = Pr{Sn = i}, so we get:

π j =
m
∑
i=1

pi jπi

● This is the equation corresponding to the jth columns of thematrix equation π⊺
R
= π⊺
R
P:

π1 . . . π j . . . πm[ ] = π1 . . . π j . . . πm[ ]
p11 . . . p1 j . . . p1m
⋮ ⋮ ⋮

pm1 . . . pm, j . . . pmm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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8 Exercises

Problem 1 (SMAS Exercise 6.5). Consider aMarkov chain with state spaceM = {1, 2, 3, 4} and transition probability
matrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.8 0 0
0 0 1 0
0 0.5 0.4 0.1
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Classify the states as recurrent or transient.

Problem2 (SMASExercise 6.6). Classify as recurrent or transient the states of theMarkov chainswith state space {1, 2, 3, 4, 5}
and the transition probabilitymatrices below by first finding all of the recurrent classes.

a. P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.3 0.4 0 0.2
0.5 0.1 0.1 0 0.3
0.8 0 0 0.2 0
0 0.1 0 0.9 0
0.3 0.1 0.1 0 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b. P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.5 0.1 0.1 0.2
0 0.8 0 0 0.2
0 0 0.3 0 0.7
0 0 1 0 0
0 0.5 0 0 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c. P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.3 0.1 0.3 0.2
0 0.8 0 0 0.2
0 0 0.3 0.4 0.3
0 1 0 0 0
0.1 0.5 0 0.4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Problem 3 (SMAS Exercise 6.8, modified). Consider the Markov chain with state spaceM = {1, 2, 3, 4, 5, 6} and
transition probabilitymatrix

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.5 0 0.4 0.1 0
0 1 0 0 0 0
0.2 0 0.4 0.3 0 0.1
0 0.9 0 0 0.1 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
If the process starts in state 3, what is the probability it will be absorbed in state 2? In state 5? In state 6? What is the
expected time to absorption from state 3?

Problem 4 (SMAS Exercise 6.11,modified). The Statistical Snacks Company plan to introduce a new cheese snack
product, Poisson Puffs, into a local market that already has three strong competitors. The analytics teamhave formulated
aMarkov chain model of customer brand switching in which the state spaceM = {1, 2, 3, 4} corresponds to which
of the three established brands or Poisson Puffs, respectively, that a customer currently purchases. Each time step
corresponds to one bag of cheese snacks purchased. Based on market research and historical data, the transition
probabilitymatrix that the analysts team anticipate is

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.70 0.14 0.14 0.02
0.14 0.70 0.14 0.02
0.14 0.14 0.70 0.02
0.05 0.05 0.05 0.85

⎤⎥⎥⎥⎥⎥⎥⎥⎦

What is the long-termmarket share for Poisson Puffs?

9



Problem 5 (SMAS Exercise 6.17). In Problem 1 from Lesson 4, you were asked to develop aMarkov chain model for
themovement of an automated guided vehicle (AGV) between four locations: a release station A,machining station B,
machining station C, and an output buffer D. In this model, the state space wasM = {1, 2, 3, 4} (1 = A, 2 = B, 3 = C, 4
= D), each time step represented one AGV trip, and the transition probabilitymatrix was

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 1/2 0
1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

What is the long-run fraction of time the AGV spends traveling to the output buffer?

Problem 6. An autonomous UAV has been programmed to move between six regions to perform surveillance. The
movements of the UAV follow aMarkov chain with 6 states (1 for each region), and the following transition probability
diagram:

1
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0.1

0.1

0.5

a. There are two recurrent classes {1, 2} and {3, 5}. Briefly explain why these sets are recurrent classes.
b. Which states are transient? Which states are recurrent? Briefly explain.
c. Suppose the UAV starts in region 1. What is the long-run fraction of time that the UAV spends in region 1?
d. What is the probability that the UAV is absorbed into states 3 or 5, given that it starts in region 4?
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